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Abstract—In this paper a new nonlinear transformation of the raw
data based on the notion of the length of seismogram and a ratio test
statistic for the accurate automatic P - wave onset detection problem
are proposed. The basic characteristic of the proposed statistic is that it
makes no assumptions for the properties of the noise, apart from very
loose stationarity requirements. Based on this statistic, we propose an
algorithm for the accurate estimation of the arrival times. From a series
of experiments on real signals we have conducted, the proposed picking
method seems to outperform well known in the literature methods.

I. INTRODUCTION

The determination of the arrival time of a seismic wave to a
particular recording station is referred to as wave picking and
automated procedures that address this problem as automatic pickers.
As some of the most fundamental problems in Seismology, including
event location, event identification, source mechanism analysis, relo-
cation procedures and tomography, rely on travel - time inversion
techniques, the reliability of the solutions depends heavily on the
accuracy of the estimated arrival times of the waves to a network
of seismic stations. Moreover, the last two of the aforementioned
problems require the detection and analysis of a very large number of
small magnitude events implying that the automatic picking technique
needs to be both robust, as microseisms produce signals with low
SNR and computationally efficient.

The first attempts to the solution of the automatic picking problem,
were based on the ratio of a Short Term Average (STA) and a Long
Term Average (LTA) of some Characteristic Function (CF) of the
data. The general idea is that in areas of noise the value of the ratio
should remain substantially constant, while when a signal emerges,
the STA should be able to capture the change much more quickly than
the LTA, resulting in a sudden rise of the ratio values. The decision
for an arrival is then based on the comparison of the STA/LTA ratio
to a - mostly empirically - predetermined threshold. The CF proposed
by Allen [1], [2], is given as a weighted sum of the squared amplitude
and the squared derivative of the signal, while Baer and Kradolfer
[3] presented a new CF by taking the fourth power of Allen’s CF
and continuously normalizing its values with the running estimation
of its mean and its variance. Earle and Shearer [4] used an envelope
function of the seismogram, given as the square root of the sum of
the squared values and the squared Hilbert transform of the signal.
Aldersons [5] presented the MannekenPix, a picking procedure that
is based on the Baer - Kradolfer algorithm, but adds pre- and post-
processing steps in order to improve its results. Despite their age,
the STA/LTA based pickers remain among the most widely used and
are included in many popular seismological software packages (e.g.
Earthworm, Sac2000).

A different approach to the solution of automatic picking problem
is based on the AR modeling of the seismic data [6], [7], [8], [9].
Under this framework, the seismogram is considered to be composed
of two different stationary processes divided at the onset point. By
considering each point of the seismogram as a candidate dividing
point, an AR model is fitted on each part. This leads to a sequence
of model pairs and a series of modeling error values, measured at

each point by the Akaike Information Criterion (AIC). The onset time
is then selected as the time point that led to the best modeling results,
denoted by the minimum value of the AIC sequence. Leonard and
Kenett [10] propose the use of a single AR model, which is calculated
only once from the initial part of the seismogram. This model is then
used for the calculation of a sequence of AIC values for the whole
interval, expecting that at the onset point the statistical properties of
the data will change and this will lead to greater modeling errors
from that point on. Again the onset time is assumed to be pointed
out by the minimum of the AIC sequence. It has been reported that
the AR model - based pickers require a relatively large SNR and a
sudden arrival of the wave (as opposed to an emerging arrival) in
order to perform well [10], [11].

The Discrete Wavelet Transform (DWT) has also been used to
detect and pick the arrival time of seismic phases. Anant and
Dowla [12] applied the DWT and used polarization and amplitude
information contained in the wavelet. Gendron et al [13] jointly
detected and classified seismic events via Bayes theorem by using
features extracted from wavelet coefficients of the records. Zhang
et.al. [11] obtain a denoised form of the signal by applying soft
thresholding to the DWT coefficients and then calculate an AIC -
like sequence without fitting AR models, based on the variances of
the signal parts before and after each candidate onset point. The
minimum of this sequence gives again the selected arrival time.

Der and Shumway [14], used a modified version of the CUSUM
algorithm, proposed by Inclan and Tiao [15] for the detection of
multiple variance changes in time series. The authors indicate the
need for pre-filtering of the seismograms in order to improve the
amplitude contrast between the noise and the arrival. Nakamula et.
al. [16] divide a record into equal length frames and check the local
and weak stationarity of each interval using the theory of the KM2O-
Langevin equations. Their method is based on the assumption that
the frames are stationary as long as they include only background
noise, but the stationarity will break abruptly when a seismic signal
arrives and the frames include both background noise and samples
of the P-wave.

Methods based on Higher Order Statistics have also been proposed.
Saragiotis et.al. [17] use a sliding window over the waveform and
calculate skewness and kurtosis at ever position. They estimate the
arrival time by the maximum slope of the calculated sequences, an-
ticipating that in the neighborhoods of P - wave onset the sequences’
amplitude will present local maxima, due to the radically changing
statistical properties of the sample. Galiana-Merino et. al. [18] base
their method on the same general idea, but perform the statistical
analysis (calculation of kurtosis) on the Stationary Wavelet Domain
of the signal. According to the authors this leads to a more robust
estimator of the arrival time.

Finally, combination of the above described methods have also
been proposed. Bai and Kenett [19] use a sliding window over the
seismogram and extract a set of features based on the amplitude, the
instantaneous phase and the autoregressive coefficients of each frame.
The decision is then based on the STA/LTA ratio for each sequence of



feature values. AR - modeling, STA/LTA and polarization information
is also combined by Diehl et.al. [20].

The remaining of this paper is organized as follows. In Section
II the problem formulation is presented. In Section III a nonlinear
transformation of the raw data based on the notion of the length of
seismogram is defined and a new ratio test statistic for the accurate
automatic P - wave onset detection problem is proposed. In addition,
using this statistic, an algorithm for the accurate estimation of the
arrival times of the seismic events is also proposed. In Section
IV where our experimental results are presented, we compare the
performance of the proposed method against two well known picking
methods. Finally, Section V contains our conclusions.

II. PROBLEM FORMULATION

Let us denote with xn, n = 0, 1, · · · , the record from a given
station and let us also assume that during the recording interval
occurred K seismic events. If we denote with sk

n, n = 0, 1, . . . , Nk,
the signal produced by the k-th event and with nk the corresponding
wave arrival time, then xn can be expressed as:

xn = wn +

K∑
k=1

sk
n−nk

, (1)

where wn is a noise process. The problem at hand is then that of
the joint estimation of the number of events, K and of the arrival
times nk. We mention here that such problems are often ill-posed
and it is usually necessary to impose extra conditions in order to
obtain an acceptable solution. Apart from the additive white noise,
seismic signals are also contaminated with seismic noise, usually
a low frequency signal which is the combined result of ground
motion, ocean currents, changes in temperature and atmospheric
pressure during the recording interval and other location specific
factors. A typical recording of a microseismic event, exhibiting the
aforementioned degradations is shown in Fig. 1. As a very common

Fig. 1. Example of a seismogram.

approach to address these problems, Seismologists apply bandpass
filtering to the data in a pre-processing step [14], considering that any
contribution to very low and high frequencies is mainly due to noise.
However, by taking into account that the most useful information
for solving the problem at hand is contained in the high frequency
band of the signal, the validity of the above mentioned assumptions
is questionable. Indeed, we expect that the most radical change of
the amplitude of the recorded signal, occurring at the arrival time of
the event, will manifest itself in the high frequency content of the
signal. Thus, smoothing out - basically in an uncontrollable way -
the information concentrated around the time instances of the highest
interest, seems to be a non convincing action. In the next section
we propose a more natural quantity that emphasizes on the above
mentioned point, and use it for the definition of a test statistic, in
order to attack the estimation problem at hand.

III. THE PROPOSED LENGTH BASED TEST STATISTIC

Let us consider a discrete time signal xn obtained from the sam-
pling of its continuous time counterpart x(t) with a sampling period

of Ts, so that xn = x(nTs). Let us also define ∆Ln, n = 1, 2, · · ·
as the Euclidean length of the line segment connecting consecutive
pairs of the points ((n− 1)Ts, xn−1) and (nTs, xn), i.e.:

∆Ln =
(
(xn − xn−1)2 + T 2

s

) 1
2 = Ts

(
(
xn − xn−1

Ts
)2 + 1

) 1
2

.

(2)
In order to give a more physical meaning in the above defined
quantity, let us concentrate ourselves in the noiseless case, i.e.
wn = 0. If we consider that the first order backward differences
of signal xn appeared in Equ. (2) constitute an approximation1 of
the derivative ẋ(t) of function x(t) at the sampling point nTs, i.e.:

xn − xn−1

Ts
≈ ẋ(t)|t=nTs , (3)

then ∆Ln/Ts can be considered as the approximation of the instan-
taneous change of the length of curve (let us denote it by C(x)),
defined by the following relation:

L̇(t) = (ẋ2(t) + 1)
1
2 , (4)

at the same points, i.e.:

∆Ln

Ts
≈ L̇(t)|t=nTs . (5)

Note that Equ. (4) expresses the instantaneous change in the length
of C(x) as a function of the first derivative of x(t). Note also
that the quantity defined in Equ. (2) can also be considered as a
highly nonlinearly filtered version of the original signal, with its high
frequency content enhanced and at the same time, its low frequencies
suppressed, thus ensuring, in some sense, the requirements mentioned
in the last paragraph of the Section II.

However, in the presence of noise x(t) and consequently its
sampled counterpart xn are stochastic processes, meaning that the
values of ∆Ln are in fact random variables (RVs), the statistical
properties of which can only be derived under particular assumptions
for the properties of the noise. Note however that in the case of
the seismic noise these properties are not only unknown, but it also
not safe to infer them as the factors governing the behavior of the
noise are not so clear. For this reason we would like the proposed
transformation of the raw data to ensure that our judge will be based
only on very mild stationarity requirements of the noise process. As
we can see from Fig. 2 where the evolution of the values of ∆Ln

with time for the record of Fig.1 is shown, the proposed length based
quantity seems to ensure this requirement.

Fig. 2. Values of ∆Ln for the seismogram of Fig.1.

In order to be able to derive a proper statistic and use it for solving
the problem at hand, let us define the sequences LN+

n and LM−
n , as

the mean value of ∆Ln over intervals of length NTs and MTs,
starting and ending at the n-th sampling point respectively, i.e.:

LN+

n =

∑n+N−1
k=n ∆Lk

N
, LM−

n =

∑n
k=n−M+1 ∆Lk

M
, (6)

1We assume that the real function x(t) and its first derivative ẋ(t) =
dx(t)/dt are both continuous in R.



and the following sequence of ratios:

λn =
LN+

n

LM−
n−1

, n = 0, 1, · · · . (7)

This ratio constitutes the proposed test statistic for the problem
at hand. Although the above defined test statistic can be used in
a sequential manner for the detection of multiple events, in the
following we concentrate our attention on the case of K = 1, where
as we can see from Equ. (1), the problem is limited to the estimation
of n0. Intuitively, since ∆Ln is a nonlinear function of the first
order differences of xn, and due to the particular nature of seismic
noise described above, we expect the values of LM−

n−1 and LN+

n , to
be in close vicinity of one another, as long as both time windows
cover noise parts of the record. Because of this, the values of λn for
n ≤ n0−N are expected to vary mildly around a constant level of 1.
For n0−N + 1 ≤ n ≤ n0, the window corresponding to LN+

n will
gradually cover the beginning of the seismic signal sn, thus causing
the values of LN+

n to grow, while LM−
n−1 will still account only for

noise. This results in a gradual rise in the values of λn, attaining
ideally its maximum at n = n0, where the whole right-hand window
is placed over signal and the whole left-hand one is placed over noise.
For n > n0, as values of sn start entering LM−

n−1 and as - due to the
inherent fading nature of sn - LN+

n will remain almost constant, the
values of λn will exhibit a steep drop, returning to its previous level.
This behavior of λn, for N = M = 50 samples, is displayed in
Fig. 3. A zoomed portion of the plot focusing on the main lobe, is
displayed in the upper right corner of the same figure.

Fig. 3. Values of λn obtained from the ∆Ln sequence shown in Fig.2.

A. Solving the estimation problem

Let us now concentrate ourselves on the solution of the desired
estimation problem, namely the estimation of n0. Following the
analysis presented above, a natural selection to achieve our goal
would be the solution of the following maximization problem:

n̂0 = arg max
n

λn, (8)

i.e. the location where the sequence λn attains its maximum value.
Clearly, the estimation of n0 by means of n̂0 is based on the
assumption of a constant increase of λn for n0 −N + 1 ≤ n ≤ n0

and a constant decrease for n0+1 ≤ n ≤ n0+M−1, for the reasons
presented in the preceding section. While this assumption is true in
a noiseless case, in the presence of noise, λn and consequently n̂0

are random variables. As a result, the general validity of the above
mentioned assumption is influenced by factors such as the strength of
noise near the arrival time, the amplitude and the shape of the signal
as well as the window sizes N and M used in the calculation of λn. A
particularly non favorable situation occurs in the case of an impulsive
arrival followed by a quick decay of the signal. In such a case, the
change of the signal curve length ∆Ln will be considerably higher
than that corresponding to noise samples, only in a limited interval
following n0. Denoting the length of this interval by P , and assuming
that N > P , the values of LN+

n will increase only in the interval

n0−N + 1 ≤ n ≤ n0−N +P , remaining virtually constant in the
interval n0−N+P+1 ≤ n ≤ n0. Thus, in the latter interval the value
of λn will be mainly affected by the values of the denominator of the
ratio defined in Equ. (7), which in turn depend on the characteristics
of the noise (e.g. stationarity in mean and variance) and the size M of
the window. This results in an uncertainty interval of N−P samples
where the location of the true maximum value of the sequence is
basically unpredictable. As a consequence, the optimum solution of
(8) is sensitive to all the factors mentioned above, thus degrading the
performance of n̂0 as an estimator of n0, leading to estimates that
point out to a time, a few samples prior to the true arrival.

Instead of relying on the maximum value of λn, a different
approach to the solution of the problem at hand, exploits the fact
that the values of λn start to drop rapidly, as soon as the signal
samples start entering its denominator. This is an inherent feature of
λn which is more insensitive to the parameters affecting the location
of the maximum. Thus, determining the point of the beginning of
the steep drop of λn, or schematically the rightmost corner of the
maximal peak of λn, results in a more consistent estimator of n0.
For the determination of this point we propose the following two step
procedure:
S1: Find a point located on the descending slope of the maximal

peak by solving the following maximization problem:

ñ0 = arg max
n

λn(λn−1 − λn). (9)

We anticipate the solution of (9) to be a point that combines
a large λn with a significant decrease in value, exhibiting
therefore the desired characteristics.

S2: “Climb” the slope until the corner is reached (while λñ0 −
λñ0−1 < 0 do ñ0 = ñ0 − 1).

Note that in cases that are favorable for n̂0, the two estimates of n0

will coincide. The event of Fig. 1 does not represent such a case, as
can be seen in the upper right corner of Fig. 3, where the estimation
returned by ñ0 is marked by the small square, whereas the one
returned by n̂0 can be discerned a few samples earlier. This is not by
accident, as we are going to see in the experimental results, presented
in the next section. In Fig.4, the two estimates are displayed against
the recorded signal for a more comprehensive view (the value of n̂0

is shown by the solid line, and the value of ñ0, which corresponds
to the true value of n0 for this case, by the dashed line).

Fig. 4. Estimation of n0 from the values of λn shown in Fig.3.

IV. EXPERIMENTAL RESULTS

In this section we test the accuracy of the proposed picking method
(both estimators) against the methods proposed in [14] (CUSUM)
and [17] (HOS). In order to achieve our goal, we used a data set
of 200 pre-cut recordings, each containing one seismic event. The
results obtained by each method were compared to the “true” arrival
times, manually picked by a human analyst and the histograms of the
picking errors are displayed in a unified scale in Fig. 5. For the sake of
fairness, all the methods were applied to the length sequences (∆Ln)
obtained from the raw data. Experiments on bandpass filtered versions



(a) (b)

(c) (d)
Fig. 5. Histograms of picking errors obtained by the application of the methods under comparison. (a): CUSUM based method. (b): HOS based method.
(c): Proposed method based on the solution of the optimization problem (8). (d) Proposed method based on the two step procedure.

of data were also conducted, but due to lack of space, they are
not presented. However, we must stress at this point that the results
we obtained from the application of all methods, were significantly
worse than the length-based ones thus revealing, in some sense, the
appropriateness of the proposed transformation of the raw data. As
we can clearly see from Fig. 5 (a-b), both the CUSUM and the HOS
based methods, exhibit quite similar performance, with their picking
errors asymmetrically distributed towards positive values, indicating a
constant delay in the detection of the arrived signal. For the CUSUM
method the mean error was 4.5 samples with a standard deviation
(std) of 7 samples, while for the HOS based method the mean error
was 4.6 samples with a std of 6.2 samples. On the other hand, as
it is clearly depicted in Fig. 5 (c-d) the proposed estimators have
a larger percentage of error-free pickings and their distributions are
more symmetrical than the ones achieved by their rivals. Especially,
the histogram shown in Fig. 5 (c) is almost symmetrical with respect
to 0, thus revealing its superiority among all the other ones. Regarding
the performance of the proposed estimators, n̂0 resulted in a mean
error of -2.2 samples, with a std of 3.9 samples, and ñ0 returned a
mean error of -0.02 samples, with a std of 2.65 samples.

V. CONCLUSIONS

In this paper a ratio test statistic based on the use of a length
based quantity tailored to the estimation problem of the seismic
event arrival time, and two estimators for its solution were proposed.
The performance of the proposed estimators were compared against
two well known picking ones. The experimental results confirm that
the proposed methods outperform their rivals. Issues concerning the
generalization of the proposed methods for their applicability to the
case of multiple seismic events, are currently under investigation.
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